Construction Waste Minimization and the Application of Prefabrication Technology in Hong Kong

Lara Jaillon and Prof. C.S. POON

THE HONG KONG POLYTECHNIC UNIVERSITY
The Department of Civil and Structural Engineering

Email: lara.jaillon@polyu.edu.hk
Today’s presentation

1. Introduction
 - Urban Environment in Hong Kong
 - Construction Waste Definition
 - Waste Generation in Hong Kong
 - Government Action
 - Low Waste Building Technologies

2. Objectives of the Survey & Methodology

3. Results & Discussion
 - Construction Waste Generation on Building Sites
 - Current Low Waste Construction Practices in Hong Kong
 - Prefabrication Construction & Precast Elements in Buildings

4. Case Study

5. Conclusion
1. Introduction – Urban Environment in Hong Kong

- Hong Kong is a dense mega-city with a dense urban environment where available space is limited, development rate is fast and land prices are expensive.

- The construction of high-rise buildings is consequently a common practice in Hong Kong, to maximize profit and land use.

- Over the years, Hong Kong has experienced a high housing demand in a very short period of time, requiring a massive production of residential buildings.
1. Introduction – Construction Waste Definition

- Construction waste is a mixture of surplus materials arising from various activities including site clearance, excavation, construction, refurbishment, renovation, demolition and roads works. (EPD)

- The inert portion of waste is known as public fill and includes debris, rubble, earth and concrete which is suitable for land reclamation and site formation.

- The non-inert substances of waste include bamboo, timber, vegetation, packaging waste and other organic materials. It is subject to recovery of reusable/recyclable items, and is disposed of at landfills.

Source: EPD
1. Introduction – Waste Generation in Hong Kong

- In Hong Kong, the construction industry is consuming and generating a significant amount of building materials and building waste.

- In 2004, about **20 millions tones (56,000 tpd)** of construction waste were generated, of which:
 - **12%** was disposed of at landfills and **(6,600 tpd)**
 - **88%** was disposed at public filling areas **(49,600 tpd)**

Graph:

- Quantity of construction waste disposed of at landfills and public filling areas in Hong Kong (CEDD)

THE HONG KONG POLYTECHNIC UNIVERSITY
The Department of Civil and Structural Engineering
1. Introduction – Waste Generation in Hong Kong

- Hong Kong is running out of both reclamation sites and landfill space (EPD).

- “with the current trend, our landfills will be filled up in 6 to 10 years, and public fill capacity will be run out by mid 2006”.

- In recent years, construction waste represents about 38% of the total intake at three existing landfills.

- There is an urgent need for waste reduction measures implementation.

Source: EPD and CEDD

Quantity of solid waste disposal by category in 2004 (EPD)
1. Introduction – Government Action

- In 1998, the government published a ten year Waste Reduction Framework Plan.
- The target set for the construction industry was to reduce the construction waste going to landfills by 25% between 1999 and 2004.

- The government is implementing new regulations and actions such as:
 - Construction waste landfill charge
 - Trip-ticket system
 - Waste management plan
 - Promoting the use of recycled aggregates derived from construction waste
 - Promoting low waste building technologies

<table>
<thead>
<tr>
<th>Government waste disposal facilities</th>
<th>Charge per ton</th>
<th>Type of C&D waste accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public fill reception facilities</td>
<td>HK$27</td>
<td>Consisting entirely of inert construction waste</td>
</tr>
<tr>
<td>Sorting facilities</td>
<td>HK$100</td>
<td>Containing more than 50% by weight of inert construction waste</td>
</tr>
<tr>
<td>Landfills</td>
<td>HK$125</td>
<td>Containing not more than 50% by weight of inert construction waste</td>
</tr>
<tr>
<td>Outlying Islands Transfer Facilities</td>
<td>HK$125</td>
<td>Containing any percentage of inert construction waste</td>
</tr>
</tbody>
</table>
1. Introduction – Low Waste Building Technologies

- Since the 1980’s, the Hong Kong Housing Authority has recommended the use of precast units and modules, reusable formwork and other environmentally friendly construction methods.

- The private sector heavily rely on **conventional construction methods** involving in-situ concreting, timber formwork, wet trades ad bamboo scaffolding.

- Since 2001, the government has implemented incentive schemes promoting the use of **green and innovative building technologies**:
 - Joint Practice Notes No. 1 in 2001
 - Joint Practice Notes No. 2 in 2002
 (e.g. promoting non-structural prefabricated external walls)

<table>
<thead>
<tr>
<th>LWBT in Public Housing Projects</th>
<th>LWBT in Private Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Large panel formwork</td>
<td>• Aluminum formwork</td>
</tr>
<tr>
<td>• Prefabricated steel</td>
<td>• Plastic Formwork</td>
</tr>
<tr>
<td>reinforcement system</td>
<td>• Drywall plus infill</td>
</tr>
<tr>
<td>• Precast concrete elements</td>
<td>• Metal bamboo matrix</td>
</tr>
<tr>
<td>• Semi-precast slabs</td>
<td>system scaffold</td>
</tr>
<tr>
<td>• Precast staircase</td>
<td></td>
</tr>
<tr>
<td>• Drywall partitions</td>
<td></td>
</tr>
<tr>
<td>• Precast bathroom</td>
<td></td>
</tr>
<tr>
<td>• Machinery sprayed plaster</td>
<td></td>
</tr>
</tbody>
</table>
2. Objectives of the Survey and Methodology

Objectives of the Survey:
- To investigate the current use of prefabrication and precast concrete elements in building projects;
- And its impact on construction waste reduction and design concepts;
- To identify benefits, disadvantages and barriers to the use of prefabrication in buildings.

Methodology:
- A questionnaire survey was conducted with 130 professionals in the building industry in 2005.
- Response rate of 36%
- The majority of respondents were experienced engineers (23%), architects (21%) and builders (19%) from both public and private sectors.
3. Results & Discussion –
Construction Waste Generation on Building Sites

- **Formwork** is the most waste producing construction method (when using timber formworks) followed by:
 - (2) Packaging & protection
 - (3) Finish work
 - (4) Masonry work
 - (5) Scaffolding work
 - (6) Material handling
 - (7) Concrete work
 - (8) Hoarding

- **Wastage percentage** of construction materials on buildings sites: about 16% to 20%.

In Hong Kong, most of the waste arising from temporary works is due to the use of timber formworks (30% of total identified waste).
(Poon 2004)
3. Results & Discussion – Current Low Waste Construction Practices in Hong Kong

- The four most frequently used low waste construction techniques:
 - (1) Steel hoarding
 - (2) Drywalls
 - (3) Precast concrete units
 - (4) Steel system formworks

- There is significant difference between 2001 & 2005 for Metal scaffolding showing a decrease in frequency of use. This might be due to:
 - Wider use of prefabrication
 - Higher initial cost compared with bamboo scaffolding

Ranking of the frequency of use of construction methods in 2001 & 2005
3. Results & Discussion – Prefabrication Construction & Precast elements in Buildings

- Most frequently used precast elements in building projects:
 - (1) External facades walls
 - (2) Staircases
 - (3) Floor slabs
 - (4) Internal partitions
 - (5) External elements
 - (6) Bridge decks and footbridges
 - (7) beams
 - (8) Bathrooms
 - (9) columns

- There is significant difference between 2001 & 2005 for External façade walls showing an increase in 2005. This might be due to:
 - The implementation of new incentive scheme Joint Practice Note No.2
3. Results & Discussion – Prefabrication Construction & Precast Elements in Buildings

Examples of prefabricated elements:
- Precast facades
- Semi-precast slabs
- Precast staircases
- Precast bathrooms

Source: Low Waste Building Technologies
The Hong Kong Polytechnic University
4. Case Study – The Orchards

- **Building Type:** Private Residential
- **Building Location:** 3 Greig Street, Quarry Bay, Hong Kong
- **Project Description:**
 - Two 48-storey residential towers
 - 432 residential units
 - 144 car parks
 - Clubhouse at podium
 - 2 sky gardens at 17/F & 32/F per tower
- **Total Site Area:** 5,740 m²
- **Gross Floor Area (GFA):** 56,756 m²
- **Contract Period:** 630 days (2001-2003)
- **Contract Sum:** HK$497.5 million

Client: Braemar West Ltd.

Client’s Project Manager: Swire Properties Ltd.
Architect: Wong & Ouyang (HK) Ltd.
Structural Engineer: Meinhardt (C&S) Ltd.
Quantity Surveyor: H.A. Brechin & Co. Ltd
Main Contractor: Hip Hing Construction Co. Ltd
Prefabrication Manufacturer: Quon Hing

Source: Low Waste Building Technologies
The Hong Kong Polytechnic University
4. Case Study – The Orchards

Precast Concrete Elements:
- Semi-precast balcony
- Sunshade
- Precast facade
- Lost form panel
- Lost form column
- Precast staircase

<table>
<thead>
<tr>
<th>Element</th>
<th>GFA exemption</th>
<th>No. of elements / floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-precast balcony</td>
<td>140 ft²</td>
<td>6</td>
</tr>
<tr>
<td>Sunshades</td>
<td>200 ft²</td>
<td>10</td>
</tr>
<tr>
<td>Precast facades</td>
<td>91 ft²</td>
<td>12</td>
</tr>
<tr>
<td>Lost from panels</td>
<td>49 ft²</td>
<td>10</td>
</tr>
<tr>
<td>Lost form columns</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Precast staircase</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total:</td>
<td>480 ft²</td>
<td></td>
</tr>
</tbody>
</table>

Source: Hip Hing Construction
4. Case Study – The Orchards

Precast Concrete Elements

Source: Low Waste Building Technologies
The Hong Kong Polytechnic University
4. Case Study – The Orchards

- Summary of resources consumption of precast elements against conventional method (Fong et al., 2004):

<table>
<thead>
<tr>
<th>Precast elements</th>
<th>Energy/ m²</th>
<th>Water/ m²</th>
<th>Waste/ m²</th>
<th>Cost/ m²</th>
<th>time</th>
<th>Manpower/ m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>112% +12%</td>
<td>59% -41%</td>
<td>44% -56%</td>
<td>101% +0.25%</td>
<td>4 days/ cycle -20%</td>
<td>90.5 % -9.5%</td>
</tr>
</tbody>
</table>

- Summary of environmental performance compared with traditional construction:
 - Reduction of scaffolding work
 - Reduction of timber formwork
 - Reduction of on-site dust & noise nuisance
 - Water consumption reduction
4. Case Study – The Orchards

- Cost comparison (Fong et al., 2004):

<table>
<thead>
<tr>
<th>Conventional construction method</th>
<th>Low waste building technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber formwork</td>
<td>Aluminum formwork</td>
</tr>
<tr>
<td>100</td>
<td>115-125</td>
</tr>
<tr>
<td>In-situ facade</td>
<td>Precast facade</td>
</tr>
<tr>
<td>115-125</td>
<td>100</td>
</tr>
<tr>
<td>In-situ staircase</td>
<td>Precast staircase</td>
</tr>
<tr>
<td>110-120</td>
<td>100</td>
</tr>
<tr>
<td>Traditional blockwall</td>
<td>Hardiwall system</td>
</tr>
<tr>
<td>100</td>
<td>170-190</td>
</tr>
<tr>
<td>Traditional plaster</td>
<td>Spray plaster</td>
</tr>
<tr>
<td>100</td>
<td>110-120</td>
</tr>
</tbody>
</table>

- Construction cost comparison:

(Low Waste Building Technologies, The Hong Kong Polytechnic University)

<table>
<thead>
<tr>
<th>Conventional cast in-situ method</th>
<th>Precast construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK$800/ sq.ft</td>
<td>HK$816/ sq.ft</td>
</tr>
<tr>
<td></td>
<td>Approximately 1% higher than conventional construction method</td>
</tr>
</tbody>
</table>
5. Conclusion

- The construction industry in Hong Kong is consuming and generating a significant amount of materials and waste.

- Formwork, packaging & protection and finish work are the major contributors to construction waste.

- Prefabrication reduces waste generation on building sites, as elements are produced in a factory environment, and finish work and wet trades are avoided on-site.

- Other low waste building technologies include reusable formworks, dry wall, spray plastering, tubular scaffolding and steel hoarding.

- Further studies will include a wider questionnaire survey, interviews with professionals of the construction industry, and case studies of existing and new building projects in Hong Kong.

- Low Waste Building Technologies Website: http://www.cse.polyu.edu.hk/~cecsbpoon/lwbt
Thank You!

Construction Waste Minimization and
The Application of Prefabrication Technology in Hong Kong

Lara Jaillon and Prof. C.S. POON
Email: lara.jaillon@polyu.edu.hk